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LEmR TO THE EDITOR 

Irregular bebaviour arising from quasiperiodic forcing of 
simple quantum systems: insight from perturbation theory 

Edward R Vrscay 
Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, 
Waterloo, Ontario, Canada NZL3G1 

Abstract. The perturbation ofsimple quantum systems with almost periodic time-dependent . 
forces can produce irregular dynamics which is manifested in(i) broadband Fourier spectra 
and (ii) rapid decay of autacorrelafion functions. Same classical perturbation methods for 
differential equations provide insight info this bebaviour by showing the existence of a 
dense spectrum on the real line. Such irregular behaviour is shown also to occur in some 
model linear systems of dXerential equations, e.g. a quasiperiodic Mathieu-type equation. 

Many studies (Pomeau et al 1986, Milonni et al 1987, Gerry and Vrscay 1989, to 
mention only a few) have shown that the quasiperiodic forcing (and kicking) of simple 
quantum systems can produce an irregular dynamical behaviour of solutions. It is well 
understood that since the dvnamical eouatinns arise from a linear Schriidineerevnllltion -d--~---~-~ ~_...~.~~...~~ -...- - --...D.. ..-.-..-.. 

equation, chaotic motion in the true (nonlinear) sense of sensitive dependence to initial 
conditions (sort) or positive Lyapunov exponents does not exist. However, a significant 
irregularity is observed for high field strengths and may be characterized by (i) 
broadband Fourier spectra and (ii) rapid decay of autocorrelation functions. 

In the case of periodic forcing, standard Floquet theory (Hale 1969) establishes 
the quasiperiodic nature of the solutions. However, it is not readily applicable to 
quasiperiodic linear systems. It has been shown (Hogg and Huberman 1983) that for 
a bounded, non-resonant quantum system with a potential V(x, 1) which is almost 
periodic in time, the time evolution of a solution $(x, t) to the SchrGdinger equation 
is almost periodic. However, there remains the more important question concerning 
the nature of the spectrum of the solution, which affects its dynamics. For the special 
case of Fibonacci-type quasiperiodic forcing of a two-level system, the spectrum has 
been shown to be continuous (Luck et al 1988), which is consistent with the irregular 
dynamics observed. 

With particular reference to the two-level spin system studied by Pomeau et al, this 
letter attempts to show that simple perturbation techniques for differential equations 
can reveal the existence of a continuous Fourier spectrum responsible for the irregular 
behaviour which is manifested in terms of properties (i) and (ii) given above. The 
results can, in principle, be generalized to N-level systems. It will be instructive to 
first examine a simple linear system (example 1)--a harmonic oscillator with 
quasiperiodic, parametric forcing (Mathieu-type equation)-to show how such forcing 
of linear systems can indeed lead to highly irregular behaviour. Equations of this kind 
are relevant to quantum systems since, in the Hamiltonian formulation, all external 
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forcing becomes absorbed into the linear Schrodinger equation to produce a time- 
dependent system of homogeneous linear differential equations, i.e. i = A(f)x, rather 
than a linear system with time-independent inhomogeneous terms, i.e. i = Ax+ b(r) .  
The only major difference between the classical and quantum systems is that, in the 
former, the (Euclidean) form ilx(t)ll is not constant. This has inspired example 3 below: 
a 'toy' classical system for which the above norm is conserved, and which exhibits the 
irregular behaviour observed for the quantum systems. This letter presents the major 
results: a detailed analysis of the perturbation treatments will appear elsewhere. 

Example 1. Classical example. Consider the following quasiperiodic version of the 
Mathieu equation for x(f) ER (with simplified initial conditions) 

X + ( U Z + E  cos r+EcOS~f)x=o x(0) = A  X(O)=O ( 1 )  

where x is irrational and, for simplicity, a is assumed rational but non-integer. The 
psrsmstric mnds!a!ions sre treated BE Q(c) pe!?~'rb~!ion: of a !inear asci!!~!nr. Wc 
consider only those values of (a, E )  which lie away from the classical 'fans' or 'Amold 
tongues' of instability associated with parametric excitation (Nayfeh and Mook 1989). 
(In this case, there are now two sets of 'tongues': for E =0, their boundaries, which 
characterize 27r- and 2rrlx-periodic solutions, touch the a axis at the non-negative 
values a * n / 2 ,  mx/2,  m, n =0,1.2,. . . . To the author's best knowledge, this feature, 
which can be generalized to the case of multifrequency quasiperiodic functions in ( I ) ,  
has not been discussed in the literature.) All such solutions of (1) will be bounded 
and almost periodic (Besicovitch 1954):,x(t) admits an expansion of the form 

x ( t ) =  c, e".'. (2) 
" - 0  

The set A = {a corresponds to the spectrum of x ( l ) .  

expansion (Verhulst 1990) for x( t), 
Now, for E << 1, one can first consider the simplest Poincar&type perturbation 

-3 

x ( t ) =  r: E R X ( " ) ( t )  ~ ( ~ ' ( t )  = A cos at. (3) 
" - 0  

The corrections d")( r )  are the solutions to the inhomogeneous second-order differential 
equations 

and have the general form 

d n J ( t ) =  A',"'(t) cas(h!"'lt 4(,"') ( 5 )  
k - 0  

where the frequencies are given by the set of all possible non-negative linear combina- 
t i o n s h ~ ' = ( ( a * ~ , * t k , x I ,  O s k , s ~ , O s k ~ s n ] ,  (Theearlierassumptionson a avoid 
the case of resonance, where any of the above linear combinations would coincide with 
a.) Note that secular terms are encountered in this method, i.e. Ap)(t) may contain 
terms in r. This problem can, however, be bypassed with the method of multiple scales 
(Nayfeb 1973), i.e. define the variables T, = emf, m =0,1,2,. . . , and consider the 
expansion 

M- l  

x (1)=  I: E m X m ( T o ,  ..., T,)+O(rT,). (6) 
"-0 
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The net result (details to be presented elsewhere): the set of frequencies obtained to 
all orders in the method consists of the set 

{ A :  A = a* kl* k a ,  k , ,  k2E{0, 1,2 , .  . .}}. (7) 
The key point is that the multiplication by the cosine terms in (4) may be considered 
to mimic the 'frequency build-up' of higher harmonics which is characteristic of 
nonlinear problems (e.g. Duffing oscillator). This would not occur in the case of external 
forcing. Since ,y is irrational, it follows from Kronecker's theorem (Hardy and Wright 
1985) that the set of frequencies in (7) is dense on the real line, hence A = rR, i.e. 
continuous spectrum. Higher harmonics are damped by appropriate powers E ~ .  This 
is seen in numerically calculated Fourier spectra. As E increases, however, higher 
harmonics become discernible and more uniform in magnitude. For E > 1, the spectrum 
is quite broadband. As well, the autocorrelation function (defined below) exhibits the 
same rapid decay as shown for the irregular evolution reported in Pomeau ef Q I  (1986) 
and Milonni et ol (1987). (In this regime, the validity of the perturbation solution 
breaks down.) In other words, the bounded solutions of a classical quasiperiodic (with 
incommensurate frequencies) Mathieu equation display the same irregular behaviour 
as observed in the literature for simple quantum systems. 

Example 2. The two-level quantum system studied in Pomeau et al (1986), which 
yields Bloch-type equations of motion, can be written in the following matrix form: 

x = [ A +  EB( t ) ] x  ( s a )  

A=[: -:I B=[f i f )  (86) 

Here, fl= o , - w 2 ,  where the oi are level precession frequencies and f ( f )  represents 
the external forcing function. We shall write f( I) =cos ,ylf + cos x2f .  where the xf are 
assumed incommensurate. (This is merely a rewriting of the forcing function g ( f )  
appearing in Pomeau et al(1986).) Motion of>-x( f) is confined to a sphere in the phase 
space R'. We now consider again the PoincarC-type perturbation method applied to 
equation (8): 

x ( t )  = ( x , ( t ) ,  X A O ,  x m r  ER) 

0 0  - f ( f )  0 

J L - A  

m 

x ( t ) =  E " X I " ) ( f )  x(0) = c = ( c , ,  c2, C , ) S  (9) 
n=o 

The solution to the unperturbed equation ( E  = 0) is given by (Hirsch and Smale 1974, 
chap 5, section 4) 

0 0 
x(")(t)=e"e= 0 c o s a t  - s ina t  (10) [ 1 s i n a t  cos o f ] [  

The nth-order perturbation equation is given by the inhomogeneous first-order system 
L ;(")= AV(")+ . &.("-'I ._ d " ) ( O )  = 0 r? = !, 2, I ~ ~ !!!! 

with solution (Hirsch and Smale 1974, ch 5, section 5 )  
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For this rather simple system, the solutions are easily shown to exhibit the following 
recursive behaviour for n = 1 , 2 , .  . . , 

x$"'(t)=cosOt f(s)x', .- l '(s)  c o s n s  d s f s i n n t  f(s)x',D-l'(s)  s i n n s  ds (136) 

and an equation similar to (136) for x$" ' ( t ) .  Insertion of (10) into the above, followed 
by iteration, shows that a 'frequency buildup' similar to that of example 1 operates 
here. However, secular terms are again encountered. The method of multiple scales 
may again be applied, to yield that the set of frequencies is given by {A: A = *k,O* 
k,XI * k,x2, k , ,  k,, k, E {0,  1 , 2 , .  . .}}. This set is again dense on R, hence A = R, account- 
ing for the irregular behaviour. Higher-level spin systems with external forcing could 
conceivably be written in the form of (8), and irregular behaviour for sufficiently large 
field strengths would be expected. 

Example 3. A simpler 'toy' problem: It is instructive to consider the following two- 
dimensional dynamical system, 

ld (d 

where f(t) is taken to be the quasiperiodic function used in example 2 above. This 
'non-quantal' problem represents a simplification of (8): motion is restricted to a circle 
of radius Ilx(O)ll= IIc(I. A perturbation analysis similar to that performed in example 
2 shows that the set of frequencies is given by {A: A = a i  k,X, i k,X2, k , ,  k2 E 

(0, 1 , 2 , .  . .}}, which is dense on R. In this special example, the result may also 
be derived as follows: if ( x l ( t ) ,  x 2 ( f ) )  = ( r  cos O ( t ) ,  r sin O ( t ) ) ,  then O ( t )  = 
$+at+fJ(s) ds. Using the relation (Abramowitz and Stegun 1975) 

h=+m 

1 e'"Jh(&), (15) 

where the Jk(x) denote Bessel functions of integer order, the Fourier transform of x( 1 )  
may be computed, in agreement with the perturbation result. 

In what follows are numerical results for the special case a = 1, x ,  = 17711128657 
and ,y,=4637/13313, with x(O)=(l,O). Following Pomeau et a1 (1986) and Milonni 
et al (1987), these frequencies have been chosen to approximate irrational and incom- 
mensurate values. The three cases E = 0.1, 1.0 and 5.0 are considered here. In particular, 
the component x , ( t )  was studied in terms of the discrete time series y k = x , ( k T ) ,  
k = 0,1,. . . , where T = 0.2 has been chosen. Plots of the power spectra are observed 
to behave as described in example 1:  for E = 0.1, the dominant 'zeroth order' frequency 
a = 1 is seen, along with the four subdominant first-order frequencies U(*'.  For E = 1.0, 
many higher harmonics appear at  roughly equal amplitude. At E = 5.0, the spectrum 
has become very broadband and damped. Figure 1 shows plots of the discrete, 
normalized time autocorrelation functions (ACF) C ( k )  corresponding to the y k ,  defined 
as 

Si"( = 
k=-m 
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Figure I. Moduli of the autocorrelation function C ( k )  in (16) for 6 =0.1, l.0,5.0. 

(Trivially, C(0)  = 1 .  As shown by the spectra, a transition from rather regular motion 
(&CC 1) to highly irregular motion ( E  > 1) is demonstrated. Irregularity is characterized 
by a rapid decrease of the ACF with k; which approximates a white-noise-type signa!. 
(This feature was employed as a potential signature for ‘quantum chaos’ in the two 
references cited earlier.) Not surprisingly, the dynamics revealed in these plots is quite 
similar to that observed for these quantum systems. The general decrease in correlation 
with increasing E can also be seen in the behaviour of the quantity R =max,,,lC(k)l 
for OS E <  10, plotted in figure 2. There is a great similarity between this graph and 
figure 5 of Pomeau et a/ (1986). Poincart (stroboscopic) return maps =P(B.) ,  
where 8, = O(nT) ,  also demonstrate the increasingly irregular behaviour as the pertur- 
baton is strengthened. 

The root of the irregular behaviour observed in the simple quasiperiodic linear 
systems studied above lies in the incommensurate nature of the frequencies composing 
the forcing term. Perturbation methods reveal a ’frequency build-up’ phenomenon 
analogous to that found in nonlinear equations. This, in turn, accounts for a Fourier 
spectrum which is dense on the real line. The degree of irregularity increases with the 
forcing strength, but in a continuous fashion, rather than by a route of bifurcation. It 
is expected that other quantum systems which may be written in  the forms shown 
above, e.g. N-level spin systems with quasiperiodic forcing, would reveal similar 
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Figure 2. R =max,,,lC(k)l as a function of the perturbation parameter E. 

irregular behaviour. An examination of infinite dimensional systems, e.g. quasiperiodi- 
cally perturbed oscillators, is currently in progress. 
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Research Council of Canada, which is gratefully acknowledged. 
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